Problem 1.15

Estimate the average temperature of the air inside a hot-air balloon (see Figure 1.1). Assume that the total mass of the unfilled balloon and payload is 500 kg . What is the mass of the air inside the balloon?

Solution

Start by drawing a free-body diagram of the hot-air balloon. There are three forces to take into account - the weight of the unfilled balloon and payload (mg), the weight of the air inside the balloon ($\rho_{\mathrm{i}} V g$), and the buoyant force due to Archimedes' principle ($\rho_{\mathrm{o}} V g$). Note that $\rho_{\mathrm{o}} V g$ is the weight of the air outside displaced by the balloon.

Apply Newton's second law in the vertical direction.

$$
\begin{align*}
\sum F_{y} & =m a_{y} \\
\rho_{0} V g-\rho_{\mathrm{i}} V g-m g & =0 \tag{1}
\end{align*}
$$

Assume that the air is ideal so that the ideal gas law applies.

$$
P V=n R T
$$

The number of moles n is the mass m divided by the molar mass \mathscr{M}.

$$
P V=\left(\frac{m}{\mathscr{M}}\right) R T
$$

Solve for m / V, the mass density.

$$
\frac{m}{V}=\frac{P \mathscr{M}}{R T} \Rightarrow\left\{\begin{array}{l}
\rho_{\mathrm{i}}=\frac{P_{\mathrm{i}} \mathscr{M}_{\mathrm{i}}}{R T_{\mathrm{i}}}=\frac{P \mathscr{M}}{R T_{\mathrm{i}}} \\
\rho_{\mathrm{o}}=\frac{P_{\mathrm{o}} \mathscr{M}_{\mathrm{o}}}{R T_{\mathrm{o}}}=\frac{P \mathscr{M}}{R T_{\mathrm{o}}}
\end{array}\right.
$$

The pressures inside and outside the balloon are assumed to be equal ($P_{\mathrm{i}}=P_{\mathrm{o}}=P=101325 \mathrm{~Pa}$) because there's an opening at the bottom of the balloon. Assuming the air is dry air at sea level, the composition is the same inside and outside the balloon $\left(\mathscr{M}_{\mathrm{i}}=\mathscr{M}_{\mathrm{o}}=\mathscr{M}=28.97 \mathrm{~g} / \mathrm{mol}\right.$ from Problem 1.14). Consequently, only the temperature makes the air inside the balloon less dense. Substitute the formulas into equation (1) and solve for the temperature inside the balloon.

$$
\begin{gathered}
\left(\frac{P \mathscr{M}}{R T_{\mathrm{o}}}\right) V g-\left(\frac{P \mathscr{M}}{R T_{\mathrm{i}}}\right) V g-m g=0 \\
\frac{P \mathscr{M}}{R T_{\mathrm{o}}}-\frac{P \mathscr{M}}{R T_{\mathrm{i}}}-\frac{m}{V}=0 \\
\frac{P \mathscr{M}}{R T_{\mathrm{o}}}-\frac{m}{V}=\frac{P \mathscr{M}}{R T_{\mathrm{i}}} \\
\frac{P \mathscr{M} V-m R T_{\mathrm{o}}}{R T_{\mathrm{o}} V}=\frac{P \mathscr{M}}{R T_{\mathrm{i}}} \\
\frac{R T_{\mathrm{o}} V}{P \mathscr{M} V-m R T_{\mathrm{o}}}=\frac{R T_{\mathrm{i}}}{P \mathscr{M}} \\
\frac{T_{\mathrm{o}} P \mathscr{M} V}{P \mathscr{M} V-m R T_{\mathrm{o}}}=T_{\mathrm{i}}
\end{gathered}
$$

Therefore, the temperature inside the balloon is

$$
T_{\mathrm{i}}=\frac{T_{\mathrm{o}}}{1-\frac{m R T_{\mathrm{o}}}{P \mathscr{M} V}} .
$$

Assuming the temperature outside the balloon is room temperature $\left(25^{\circ} \mathrm{C}\right.$, or 298.15 K$)$ and that the volume of the balloon is $2000 \mathrm{~m}^{3}$, the inner temperature is

$$
T_{\mathrm{i}}=\frac{298.15 \mathrm{~K}}{1-\frac{(500 \mathrm{~kg})\left(8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.15 \mathrm{~K})}{(101325 \mathrm{~Pa})\left(28.97 \frac{\mathrm{~g}}{\mathrm{~mol}} \times \frac{\mathrm{kg}}{1000 \mathrm{~g}}\right)\left(2000 \mathrm{~m}^{3}\right)}} \approx 400 \mathrm{~K} .
$$

The mass of the air inside the balloon is the product of the inner density and the volume.

$$
m_{\mathrm{i}}=\rho_{\mathrm{i}} V=\frac{P \mathscr{M} V}{R T_{\mathrm{i}}}
$$

With the numbers above,

$$
m_{\mathrm{i}} \approx \frac{(101325 \mathrm{~Pa})\left(28.97 \frac{\mathrm{~g}}{\mathrm{~mol}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(2000 \mathrm{~m}^{3}\right)}{\left(8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(400 \mathrm{~K})} \approx 2000 \mathrm{~kg} .
$$

